“纸上得来终觉浅,绝知此事要躬行”,在继续翻译《HMM学习最佳范例》之前,这里先补充几个不同程序语言实现的HMM版本,主要参考了维基百科。读者有兴趣的话可以研究一下代码,这样对于HMM的学习会深刻很多!
C语言版:
1、 HTK(Hidden Markov Model Toolkit): HTK是英国剑桥大学开发的一套基于C语言的隐马尔科夫模型工具箱,主要应用于语音识别、语音合成的研究,也被用在其他领域,如字符识别和DNA排序等。HTK是重量级的HMM版本。 HTK主页: 2、 GHMM Library: The General Hidden Markov Model library (GHMM) is a freely available LGPL-ed C library implementing efficient data structures and algorithms for basic and extended HMMs. GHMM主页: 3、 UMDHMM(Hidden Markov Model Toolkit): Hidden Markov Model (HMM) Software: Implementation of Forward-Backward, Viterbi, and Baum-Welch algorithms. 这款属于轻量级的HMM版本。 UMDHMM主页:Java版:
4、 Jahmm Java Library (general-purpose Java library): Jahmm (pronounced “jam”), is a Java implementation of Hidden Markov Model (HMM) related algorithms. It’s been designed to be easy to use (e.g. simple things are simple to program) and general purpose. Jahmm主页:Malab版:
5、 Hidden Markov Model (HMM) Toolbox for Matlab: This toolbox supports inference and learning for HMMs with discrete outputs (dhmm’s), Gaussian outputs (ghmm’s), or mixtures of Gaussians output (mhmm’s). Matlab-HMM主页:Common Lisp版:
6、CL-HMM Library (HMM Library for Common Lisp): Simple Hidden Markov Model library for ANSI Common Lisp. Main structures and basic algorithms implemented. Performance speed comparable to C code. It’s licensed under LGPL. CL-HMM主页:Haskell版:
7、The hmm package (A Haskell library for working with Hidden Markov Models): A simple library for working with Hidden Markov Models. Should be usable even by people who are not familiar with HMMs. Includes implementations of Viterbi’s algorithm and the forward algorithm. Haskell-HMM主页: 注:Haskell是一种纯函数式编程语言,它的命名源自美国数学家Haskell Brooks Curry,他在数学逻辑方面上的工作使得函数式编程语言有了广泛的基础。是否还有C++版、Perl版或者Python版呢?欢迎补充!
转自:“我爱自然语言处理”:www.52nlp.cn
链接: 译自: